N000140410524 Profiling Float Observations in the Aegean Sea

Cruise II

CRUISE REPORT

1. Introduction and objectives

The Profiling Float Observations in the Aegean Sea - Cruise II experiment is a joint effort of the <u>University of Washington, the Hellenic Center for Marine Research</u> and the <u>University of Athens</u>. The overall objective of this project is to provide a continuous long-term record of temperature and salinity characteristics of the water column in the major deep basins of the Aegean Sea. The results of these measurements can contribute significantly to our understanding of the seasonal and interannual variability of the circulation and water mass characteristics in the region as well as to the connection between the different sub-basins. The project is funded by the <u>Office of Naval Research</u> and the <u>U.S. Office of Naval Research Global</u>

More specifically, the project is aiming to

- produce an updated climatology of water mass structure in the larger subbasins of the Aegean Sea
- monitor patterns of the interannual variability in the water mass structure, the circulation and water mass formation of the region
- create a valuable data set for numerical model initialization and assimilation used by the operational near real time models of the region (POSEIDON, ALERMO).

Figure 1. The R/V Aegaeo and Float 2041 deployment

In order to achieve these objectives, four (4) profiling floats have been deployed in the Aegean Sea and CTD surveys conducted in the various sub-basins. This report describes the fieldwork carried out during the second cruise (Cruise II) aboard the R/V Aegaeo that took place in February 2006. The shipboard scientific activities consisted of the deployment of the last two (2) profiling floats (prepared by the University of Washington – PI: S. Riser) and a hydrographic survey in the areas of deployment. In order to expand the survey, a series of measurements (in the deep basins and several straits and plateaus) was conducted. Analysis of the experimental data and comparison with previous measurements (CTD surveys and profiling float data) will lead to a better understanding of the water mass characteristics, formation processes, interannual variability of the water column structure as well as the mechanisms of exchange between the various sub-basins.

2. Cruise Dates and Personnel

The cruise was carried out aboard the R/V Aegaeo (Figure 2), from February 3 to February 13, 2006. The R/V Aegaeo departed from Piraeus, Greece, on February 3, 2006 and proceeded to the study areas (North Aegean and Cretan Sea). The cruise ended in Piraeus on February 13, 2006.

TABLE 1. SCIENCE PERSONEL								
	NAME	INSTITUTE	POSITION					
1	Alexander Theocharis	Hellenic Center for Marine	Researcher					
		Research	(Chief Scientist)					
2	Sarantis Sofianos	arantis Sofianos University of Athens						
3	Eva Krassakopoulou	Hellenic Center for Marine	Dagaarahar					
		Research	Researcher					
4	Panagiotis Renieris	Hellenic Center for Marine	Tachnician					
		Research	Technician					
5	Athanasios Morphis	Hellenic Center for Marine	Tashnisian					
		Research	rechniciali					
6	Vassilis Vervatis	University of Athens	PhD Student					

3. Scientific Activities

3.1. CTD Stations

A total of 47 hydrographic (CTD) stations were occupied on the cruise. The location of the CTD stations was selected in the areas of the profiling float deployment to capture the three-dimensional structure and circulation pattern of the specific regions. Twenty eights (28) stations were occupied in various locations around the Aegean Sea basin in order to investigate exchange of water masses between the Aegean Sea subbasins. The stations were selected in almost all deep sub-basins of the Aegean Sea, in several straits and plateaus. Another criterion for the selection was the availability of measurements during Cruise I and from the Aegean Sea profiling float data. Table 2 contains station times, locations and depths, and the stations locations are plotted in Figure 2. At each station, profiles of temperature, salinity (conductivity), and dissolved oxygen concentration were collected using a Sea-Bird CTD system. Water samples for the calibration of the oxygen concentration and salinity were collected at six stations.

TABLE 2. CTD STATIONS									
	Latitude	Longitude	DATE YY MM DD		TIME	Max Depth	Calibration		
1	37 30.962	25 28.091	06	02	03	20:10	308		
2	37 57.166	24 36.810	06	02	04	01:10	246		
3	38 41.999	24 41.978	06	02	04	05:10	1035		
4	39 05.955	24 42.994	06	02	04	07:50	820		
5	39 45.748	24 11.571	06	02	04	12:20	994	Sal	
6	39 57.887	24 18.735	06	02	04	16:00	1190		
7	40 05.968	25 15.956	06	02	04	23:25	240		
8	40 13.855	25 16.150	06	02	05	00:20	1545		
9	40 17.761	25 16.128	06	02	05	01:40	725		
10	40 24.698	25 16.034	06	02	05	02:50	108		
11	40 32.703	25 05.073	06	02	05	04:05	167		
12	39 46.751	25 38.490	06	02	08	14:40	90		
13	39 34.130	25 43.170	06	02	08	16:00	123		
14	39 14.103	25 40.006	06	02	08	17:55	325		
15	39 09.068	25 48.052	06	02	08	19:55	130		
16	38 51.420	25 34.186	06	02	08	21:55	278		
17	38 39.018	25 24.880	06	02	08	23:30	430		
18	38 25.027	25 09.641	06	02	09	01:30	580		
19	38 24.790	25 18.661	06	02	09	02:35	470		
20	38 24.844	25 28.644	06	02	09	03:43	965		
21	38 24.991	25 38.943	06	02	09	05:20	867		
22	38 09.907	25 39.393	06	02	09	07:10	458		
23	38 09.919	25 29.108	06	02	09	08:10	560		
24	38 09.957	25 21.951	06	02	09	09:05	535	O ₂ , Sal	
25	38 09.816	25 11.161	06	02	09	10:15	595		
26	37 54.920	25 09.071	06	02	09	12:05	450		
27	37 55.013	25 28.964	06	02	09	14:05	830	O ₂ ,Sal	
28	37 43.258	26 07.699	06	02	09	20:15	1190	Sal,O ₂	
29	37 34.697	25 47.492	06	02	09	22:55	540		
30	36 47.303	25 24.085	06	02	11	06:35	93		
31	36 15.077	25 29.964	06	02	11	10:40	295		
32	36 05.104	25 15.009	06	02	11	12:20	1810	Sal	
33	36 04.951	25 04.491	06	02	11	14:25	1565		

34	35 55.043	25 04.992	06	02	11	16:15	1855	
35	35 45.045	25 05.043	06	02	11	18:30	1508	
36	35 45.019	25 14.735	06	02	11	20:10	1535	
37	35 54.699	25 14.808	06	02	11	22:00	1585	
38	35 44.841	25 24.775	06	02	12	00:10	1405	
39	35 40.527	26 06.265	06	02	12	03:55	2315	
40	35 37.007	25 38.961	06	02	12	09:25	390	
41	35 55.057	25 25.085	06	02	12	11:30	1765	
42	36 05.246	25 25.279	06	02	12	13:35	1345	O ₂ ,Sal
43	36 18.437	25 18.454	06	02	12	19:25	545	
44	36 20.411	25 00.375	06	02	12	21:10	530	
45	36 18.838	24 12.116	06	02	13	01:10	980	
46	36 51.935	24 01.991	06	02	13	05:05	1040	
47	37 08.010	23 53.945	06	02	13	07:20	910	

Figure 2. Locations of the CTD stations (red dot) and the profiling floats deployment (Chios basin: green dot; Central Cretan Sea: blue dot).

3.2. Profiling floats

The last two profiling floats received by University of Washington were deployed during the cruise at two deep sub-basins of the Aegean Sea (Table 3), namely Chios basin and central Cretan Sea. These floats are APEX-style profiling floats with Sea-Bird CTD sensors, constructed at the University of Washington in Seattle from components purchased from Webb Research Corporation. The parking depths were selected at intermediate depths (400 m) to decrease malfunction possibilities (observed in the first two profiling floats) and the profile depth at 1000m in order to measure the biggest part of the water column. Density transects from CTD stations closest to the deployment site are presented in Figures 3 and 4.

TABLE 3. Profiling Float Deployment									
ARGOS No.	Reset Time (UTC)	Date	Deployment Time (Local)	Latitude	Longitude				
2620	02:15	09/02/2006	02:30	38° 24'	25° 28.827'				
2041	14:32	11/02/2006	14:55	35° 54.954'	25° 05.695'				

Figure 3. Sigma-theta transect from CTD station closest to the deployment site in the Chios basin (North Aegean).

Figure 4. Sigma-theta transect from CTD station closest to the deployment site in the central Cretan Sea (Southern Aegean).

The two profiling floats were deployed successfully and results (for all Aegean Sea profiling floats observations) can be viewed at the website: http://runt.ocean.washington.edu/uoa

4. Preliminary findings and future work

The hydrographic measurements will be processed and used together with the profiling float measurements to investigate the water column stratification of the region. They will be compared with results from Cruise I in order to establish patterns of interannual variability. They are also used as part of a PhD thesis in the University of Athens in relation to comparative modeling experiments. Figure 5 presents a summary of the temperature/salinity characteristics measured during the hydrographic survey. The ranges of temperature and salinity characteristics are very large. At the surface layers this can be attributed to the presence of the Black Sea Water in the northern basin (inflowing to the Aegean from the Dardanelles strait with very low temperature and salinity), while in the Cretan Sea surface waters are influenced by the warmer and more saline waters of Levantine origin. Remarkable differences occur also in the intermediate and deep layers, even at sub-basins located very close to each other. It becomes evident that the basin scale circulation interacts with the sub-basin scale and mesoscale dynamics (largely influenced by the complex topography of the region) creating a complex circulation and stratification pattern. The results from the cruises and float observations are compared with operational model results, for

validation purposes and in order to identify patterns and mechanisms of the regional dynamics.

Figure 5. Temperature/salinity characteristics from the CTD stations occupied during CRUISE II

Figure 6. CTD profiles at the deepest location of Limnos basin (North Aegean) acquired during CRUISE I (March 2005) and Cruise II (February 2006).

Another noteworthy result is the very large variability observed during the two cruises (CRUISE I and II), that took place almost the same time of the year. Figures 6 and 7 present temperature and salinity profiles from the CTD stations occupied at the deepest points of the north and south Aegean Sea during both cruises (the location of the first two profiling float deployments). The stratification and water mass characteristics present large differences, associated with water mass formation and changes in the circulation patterns and exchanges between various sub-basins.

Figure 7. Comparison of CTD profiles at the deepest location of Cretan Sea (South Aegean) acquired during CRUISE I (March 2005) and Cruise II (February 2006).